سلام دوست عزیز😃👋
لینکهای مفید برای شرکت در مسابقه:
در طول مسابقه، میتوانید سؤالات خود را از قسمت «سؤال بپرسید» مطرح کنید.
در زمانهای زیر، پاسخگوی سؤالات شما هستیم:
فراموش نکنید فایل کد سؤالات رو در سؤال آخر بارگذاری کنید.
موفق باشید 😉✌
در این سوال ما یک مجموعه دادهی خبری داریم که دارای ۲۳ زیر مجموعه خبری است. شما باید مدلی بسازید که از این مجموعه داده استفاده کند و برای تخمین زیر مجموعه خبر مورد استفاده قرار گیرد.
شما میتوانید از هر کتابخانه پایتونی برای حل این سوال استفاده کنید. دقت کنید که کد نفرات برتر مورد بررسی قرار خواهد گرفت.
مجموعه داده سوال را میتوانید از این یا این لینک دانلود کنید. |
---|
هنگامی که این فایل را از حالت فشرده خارج کنید فایل آموزش (train.csv
) و آزمایش (test.csv
) را مشاهده میکنید. فایل آموزش، دارای ساختار زیر است:
نام ستون | توضیحات ستون |
---|---|
title | عنوان خبر |
subgroup | زیرگروه خبر |
abstract | خلاصه خبر |
body | مشروح خبر |
تنها تفاوت مجموعه داده آموزش با آزمایش در این است که مجموعه داده آزمایش، ستونsubgroup
را ندارند.
با استفاده از مجموعه داده آموزش، یک مُدل برای پیشبینی زیرگروه خبر (ستون subgroup
) هر سطر آموزش دهید.
برای ارزیابی پاسخ شما از معیار F1 استفاده خواهد شد. این معیار به صورت زیر تعریف میشود:
ولی به دلیل اینکه ستون پیشبینی دارای بیش از ۲ کلاس است ما از معیاری به نام Weighted F1 استفاده میکنیم که F1 میانگین وزنی کلاس ها را محاسبه میکند.
برای مطالعه بیشتر در مورد این معیار میتوانید به این منبع مراجعه کنید.
داوری این سوال قبل از پایان مسابقه، تنها بر اساس ۳۰ درصد از مجموعه داده آزمایش (test ) خواهد بود. پس از اتمام مسابقه، برای بهروزرسانی نهایی جدول امتیازات، از ۱۰۰ درصد مجموعه داده آزمایش استفاده خواهد شد؛ این کار برای جلوگیری از بیشبرازش (overfit ) روی مجموعه داده آزمایش انجام میشود. |
---|
پیشبینیهای مدل خود بر روی دادگان آزمایش (test.csv
) را در فایلی با نام output.csv
قرار دهید.
این فایل باید دارای یک ستون به اسم subgroup
باشد.(بزرگ و کوچک بودن حروف نام ستون رعایت شود) که ردیف i ام هر ستون، پیشبینی شما برای نظر ردیف i ام از فایل test.csv
باشد. بعد از آمادهسازی فایل output.csv
، آن را برای ما بارگذاری کنید.
output.csv
(فقط چهار خط اول به همراه نام ستون)🔗subgroup |
---|
اجتماعی |
اجتماعی |
سیاسی |
اقتصادی |
حتما فایل output.csv
باید دارای ۱۰۱۹۵۰ سطر (بدون در نظر گرفتن header
) و یک ستون باشد.
استفاده از وزن مدلهای از پیش آموزش دیده (pretrained) برای تسهیل آموزش مدل خود، در سوالات مانعی ندارد.
فراموش نکنید که قبل از پایان زمان مسابقه، بایستی تمامی کدهای این مسابقه را از قسمت بارگذاری کُد برای ما ارسال کنید. در غیر این صورت، شما از این مسابقه، امتیازی کسب نمی کنید.
توجه داشته باشید که اگر از jupter notebook
استفاده می کنید بایستی همانند توضیحات قسمت بارگذاری کُد، خروجی .py
را دریافت و برای ارسال در نظر بگیرید. ارسال فایلهای jupyter
همانند .ipynb
مورد قبول واقع نخواهند شد.