E - Largest Triangle


  • محدودیت زمان: ۱ ثانیه
  • محدودیت حافظه: ۲۵۶ مگابایت

A “terrain” is an xx-monotone polygon defined by the points p1,,pnp_1,\dots , p_n where each point pip_i has coordinates (xi,yi)(x_i, y_i), and the following three conditions hold:

  • y1=yn=0y_1 = y_n = 0
  • yi>0y_i > 0 for 1<i<n1 < i < n
  • xi<xi+1x_i < x_{i+1} for 1i<n1 \leq i < n

توضیح تصویر

Given a terrain defined by the points p1,,pnp_1, \dots , p_n, find the largest triangle that fits entirely within the terrain, and one of its three vertices is positioned at one of the terrain points p2p_2 through pn1p_{n-1}.

ورودی🔗

The first line of input contains an integer nn, representing the number of points in the terrain 3n1053 \leq n \leq 10^5. The ithi^{th} line in the following nn lines consists of two space-separated integers xix_i and yiy_i, representing the point pip_i of the terrain.

0xi,yi1090 \leq x_i, y_i \leq 10^9

خروجی🔗

Print the area of the largest triangle contained within the terrain. Your output will be considered correct if its absolute or relative error is at most 10610^{-6}.

مثال🔗

ورودی نمونه ۱🔗

11
0 0
2 10
4 5
6 7
8 8
10 4
12 6
14 4
15 4
16 7
17 0
Plain text

خروجی نمونه ۱🔗

53.666667
Plain text
ارسال پاسخ برای این سؤال
در حال حاضر شما دسترسی ندارید.