+ محدودیت زمان: ۱ ثانیه
+ محدودیت حافظه: ۲۵۶ مگابایت
----------
Let’s assume some definitions:
1. Subarray: a non-empty continuous part of an array, eg. $[1],$ $[2],$ $[3],$ $[1, 2],$ $[2, 3],$ $[1, 2, 3]$ are subarrays of array $[1, 2, 3]$.
2. Geometric mean: for a set of numbers $x_1, x_2, \dots, x_n$ the geometric mean is defined as $\sqrt[n]{x_1 . x_2 . \cdots . x_n}$.
Array $A$ consists of $n$ non-negative integers. $A$ is given, you have to find a subarray with the minimum value of geometric mean.
# ورودی
The input consists one or more datasets. Integer $t$ at the first line indicates the number of datasets.
$$1 \leq t \leq 100$$
In each dataset, there is one integer $n$ that shows the length of array $A$, following $n$ integers will show the elements of $A$.
$$1 \leq n \leq 100$$
$$0 \leq A_i \leq 10 \, 000$$
# خروجی
For each dataset, print only one number: the answer to the problem. Print the number with exactly two digits of precision.
# مثالها
## ورودی نمونه ۱
```
3
5
1 1 1 1 1
3
0 1 2
1
1000
```
## خروجی نمونه ۱
```
1.00
0.00
1000.00
```
ارسال پاسخ برای این سؤال
در حال حاضر شما دسترسی ندارید.