یادگیری ماشین در امنیت سایبری

564
یادگیری ماشین در امنیت سایبری

از شناسایی همزمان جرایم سایبری گرفته تا تست نفوذ (penetration test)، یادگیری ماشین به بخش مهمی از امنیت سایبری تبدیل شده است. خوشبختانه یادگیری ماشین می‌تواند به حل متداول‌ترین کارها از جمله تشخیص الگو، پیش‌بینی، رگرسیون و طبقه‌بندی کمک کند.

به نظر می‌رسد در دوره‌‌ای با حجم زیاد داده و کمبود متخصصان امنیت شبکه، یادگیری ماشین راه‌حلی جایگزین برای بسیاری از مشکلات است. در واقع از طریق یادگیری ماشین می‌توان میلیون‌ها پرونده را برای کشف تهدید‌ها مرتب کرد. به‌عنوان مثال Microsoft Windows Defender از چندین لایه یادگیری ماشین برای جلوگیری از تهدیدهای احتمالی استفاده می‌کند.

در ادامه چند روشی که در آن‌ها امنیت سایبری از یادگیری ماشین استفاده می‌کند، آورده شده است.

شناسایی تهدید مبتنی بر امضا (Signature-based Detection)

سیستم‌های شناسایی تهدید قدیمی از امضاهای ابتکاری (heuristic) و استاتیک (static) برای تشخیص تهدیدها و ناهنجاری‌ها استفاده می‌کنند. به‌عنوان مثال، آنتی‌ویروس‌ها با توجه به ویژگی‌های برنامه‌ی ویروس، یک پایگاه داده امضای ویروس ایجاد و نگهداری می‌کنند. سپس برنامه‌ی ویروس را با امضاهای موجود در پایگاه داده مقایسه کرده و آن را شناسایی و حذف می‌کنند.

اگرچه درک فناوری تشخیص تهدید مبتنی بر امضا آسان است، اما روش قدرتمندی نیست. یکی از بزرگترین مشکلات آن این است که چون در این روش هر بسته باید با همه امضاهای موجود در پایگاه داده مقایسه شود، وقتی اندازه و سرعت جریان داده به طور قابل‌توجهی افزایش یابد، نمی‌توان از تطابق فرایند مقایسه امضا با سرعت ورودی داده اطمینان حاصل کرد. اگر همگام‌سازی حفظ نشود، ممکن است بخشی از پایگاه داده کنار گذاشته شود. امروزه سیستم‌های مبتنی بر امضا به تدریج با عوامل امنیت سایبری هوشمند جایگزین می‌شوند. یادگیری ماشین با شناسایی انواع جدیدی از بدافزار (Malware)، حملات روز صفر (Zero-day Attacks) و تهدیدهای مداوم پیشرفته (Advanced Persistent Threats) در این زمینه پیشرفت مثبتی داشته است.

تهدید‌های مداوم پیشرفته (Advanced Persistent Threats)

به طور کلی جلوگیری از حمله به دلیل ماهیت پیچیده آن دشوار است. یادگیری ماشین می‌تواند حمله را در مراحل اولیه شناسایی کرده و از سرایت آن به کل سیستم جلوگیری کند. بسیاری از شرکت‌های امنیت شبکه از یادگیری ماشین برای شناسایی حملات APT در مراحل اولیه تهدید استفاده می‌کنند. این روش به‌طور مؤثر از نشت داده‌های هویتی و تهدیدهای داخلی جلوگیری می‌کند. تحلیل‌های تجویزی (Prescriptive analytics) در این زمینه عملکرد بهتری دارند. این نوع تحلیل، مشخص می‌کند که باید چه اقداماتی جهت به حداقل رساندن ضررها پس از حمله سایبری صورت گیرد.

مطلب مشابه: شبکه عصبی کانولوشن چیست؟

تنظیم عملکرد و تشخیص خطا

تنظیم عملکرد (Performance Tuning) و تشخیص خطا (Error Detection) مهم‌ترین فرآیندهای تکرارشونده یک سیستم یادگیری ماشین هستند که می‌توانند به بهبود عملکرد سیستم کمک کنند. اگر تابع تعمیم سیستم بتواند خطای تعمیم کمتری را با احتمال بیشتری داشته باشد، می‌توان گفت که سیستم عملکرد خوبی دارد. هر روز شرکت‌های بیشتری برای حفظ امنیت محیط‌های مدرن فناوری اطلاعات از یادگیری ماشین استفاده می‌کنند.

اسکن آسیب‌پذیری

از یادگیری ماشین برای اسکن آسیب‌پذیری شبکه‌ها و خودکارسازی فرایندها نیز استفاده می‌شود. تقریباً تمام شرکت‌های امنیت سایبری برای شناسایی و محافظت در برابر تهدیدها، از یادگیری ماشین در محصولات خود استفاده می‌کنند. نقش یادگیری ماشین در امنیت شبکه شناسایی الگوهای رفتاری کاربران، داده‌ها، تجهیزات، سیستم‌ها و شبکه‌ها و تشخیص غیر‌عادی از عادی است. یادگیری ماشین همچنین به مدیران کمک می‌کند تا داده‌های زیادی را تحلیل کنند، انواع جدیدی از تهدیدها را بررسی کنند و سریع‌تر به تهدیدها پاسخ دهند.

امنیت شرکت

انسان‌ها حامل مهم و متنوع خطرات سایبری (از تهدیدهای داخلی و سوء‌استفاده از امتیازات و مدیریت گرفته تا هکرها) هستند. بنابراین یادگیری ماشین به تشخیص تغییرات در نحوه تعامل کاربران در محیط IT و توصیف ویژگی‌های رفتاری آن‌ها در محیط حمله کمک می‌کند. علی‌رغم الزامات بازاریابی بالا، واقعیت این است که محیط امنیتی شرکت یک شبکه عظیم و پویاست و مدیران باید دائماً بر اساس بردارهای تهدید غیر‌قابل‌پیش‌بینی و مداوم داخلی و خارجی، بر این شبکه  نظارت کرده و داده‌ها را بررسی و به‌روز کنند. هر‌چند یادگیری ماشین پیشرفت‌های مختلفی را در توانایی شناسایی، بررسی و پاسخ به تهدیدها ارائه می‌کند، اما ترکیبی از پرسنل و فناوری است که می‌تواند طیف گسترده‌ای از تهدیدها را در محیط امنیتی رو‌به‌پیشرفت کنترل کند.

این‌ها چند نمونه از ارتباط یادگیری ماشین با امنیت رایانه بود. هر روز شرکت‌های امنیتی بیشتری در فرآیندهای خود، خصوصاً در تشخیص زودهنگام، از یادگیری ماشین استفاده می‌کنند. انتظار می‌رود در آینده کاربردهای بیشتری از یادگیری ماشین در صنعت مشاهده کنیم.

نسرین نادری

اشتراک در
اطلاع از
guest

0 دیدگاه‌
بازخورد (Feedback) های اینلاین
View all comments